Warsaw Summer School 2023, OSU Study Abroad Program

Regression (multivariate)

Bivariate Correlation and Regression

Assumptions:

- Random sampling
- Both variables = continuous (or can be treated as such)
- Linear relationship between the two variables;
- Normally distributed characteristics of X and Y in the population

Linear Relationship

The line $=$ mathematical function; can be expressed through the formula $Y=a+b^{*} X$, where $Y \& X$ are our variables.

Y , the dependent variable, is expressed as a linear function of the independent (explanatory) variable X.

Model vs Reality

The function $Y=a+b * X$ is a model

In reality we do not have one line

In reality data are scattered

Regression

Finds the best fitting straight line between X \& Y : the line that goes through the means of X and of Y, and
minimizes the sum of squared errors (distances) btw. the data points (observed values of Y) and the line (predicted values of Y)
\square least square regression

Z-scores

$$
\mathbf{Z} \text { score }\left(\mathbf{X}_{i}\right)=\mathbf{X}_{i}-\text { Mean for } \mathbf{X} / \sqrt{ } \mathbf{s}^{2}
$$

The numerical value of the z -score specifies the distance from the mean expressed in terms of the proportion of the standard deviation.

For z-score distribution: mean $=0 ; s t . \operatorname{dev}=1$.

Hence, in regression, when "raw" scores \square z-scores:

For z scores

Bivariate Regression

= used to predict the dependent variable (DV) from the independent variable (IV);

Observed distribution (what the data show):
$Y=a+b^{*} X+e$.
$\mathrm{Y}=$ observed values of $\mathbf{D V}$
$a=$ the intercept (the value of Y when $X=0$)
$b=$ the regression coefficient (the slope), indicating the amount of change in Y given a unit change in X
$\mathbf{X}=$ the independent variable
$\mathbf{e}=$ error term

$\hat{Y}=a+b^{*} X$

(Prediction model)

predicted values for the dependent variable, Y
$\hat{Y}=$ $a=$ the intercept (the value of Y when $X=0$)
$\mathbf{b}=$ the regression coefficient (the slope), indicating the amount of change in Y given a unit change in X
$\mathbf{X}=$ the independent variable

Residuals

Prediction model gives the points on the line.
But, in reality, not all points fall on the line.

Predicted minus Observed values of Y at each value of $X=$ errors of prediction (i.e. error terms, residuals!!!)
$\mathrm{Y}=\mathrm{a}+\mathrm{bX}+\mathbf{e} ; \quad \square \quad \mathbf{e}=\mathrm{Y}-\left(\mathrm{a}+\mathrm{b}^{*} \mathrm{X}\right) \square \quad e=Y-\hat{Y}$
e $>\mathbf{0}$: under-prediction ($\mathrm{Y}>\mathrm{Y}$-hat)
e < 0: over-prediction ($\mathrm{Y}<\mathrm{Y}$-hat)

Ex: We checked data; Jill was paid $\$ 7.50 /$ week, not 16 . What's the prediction error?

Method of Least Squares

The regression line minimizes the sum of error terms:

$$
S S E=\sum(Y-\hat{Y})^{2}
$$

The methods of least square provides the prediction equation $\hat{Y}=a+b X$ having the minimal value of SSE.
$\mathrm{a}, \mathrm{b}=$ least square estimates
Goal:
arrive at a set of regression coefficients (bs) for the IVs that bring $\hat{Y} s$ as close as possible to Ys values

$$
\begin{aligned}
\hat{Y} & =a+b^{*} X \\
b & =\frac{\Sigma(X-\bar{X})(Y-\bar{Y})}{\sum(X-\bar{X})^{2}} \\
a & =\hat{Y}-b^{*} X
\end{aligned}
$$

Ex: if $\mathbf{a}=4, X=$ years of education $Y=$ dollars earned/week, interpret the intercept of the mode

If someone had no education (if $X=0$), then we would expect their weekly wage to be \$4

Covariance

In regression analysis we ask: to what extent could we predict Y knowing our variable X ?
Prediction means that values X and Y go together or co-vary.
Covariance is sum of products, or SP,

$$
S P=\Sigma(X-\bar{X})(Y-\bar{Y})
$$

Sums of squares for \mathbf{X} :

$$
S S x=\Sigma(X-\bar{X})^{2}
$$

Note that in the regression equation of Y on $\mathrm{X}, \quad \hat{Y}=a+b^{*} X$
b = SP / SSx

$$
b=\frac{\sum(X-\bar{X})(Y-\bar{Y})}{\sum(X-\bar{X})^{2}}
$$

Interpretation of \mathbf{b} (unstandardized coefficients)

b > 0, positive relationship
(X has a positive effect on Y)
$\mathrm{b}<0$, negative relationship
$b=0$, no relationship
(X has a negative effect on Y)
(X has no effect on Y)

Generic: a one unit (original measurement of X) increase in X produces a \boldsymbol{b} unit (original measurement of Y) increase (if $b>0$) or decrease (if $\mathrm{b}<0$) in Y

Ex: If $b=1.5, X=y e a r s$ of education, $Y=$ dollars earned/week, interpret the effect of education on weekly wages.
For a one year increase in X, we would expect weekly wages to go up by $\$ 1.50$

Regression for Z-scores of \mathbf{X} and \mathbf{Y}

Transform all the responses into Z-scores
Calculate the coefficients to create the line.

For Z-scores in the linear relationship of the type: $\hat{Y}=a+b * X$, we have:

Predicted $Z_{y}=\beta^{*} Z_{x} \quad$ because $\mathbf{a}=\mathbf{0}$

$$
a=\bar{Y}-b \bar{X} \quad \text { but } \quad Z \bar{Y}=0, \text { and } \quad Z \bar{X}=0
$$

Why bother with standardized (beta) coefficients?

Enable comparing relative magnitude of IVs effects (in multivariate regression):
Beta coefficients are expressed in units of standard deviations

For bivariate regressions:
β (beta) $=\mathrm{b}=\mathrm{r}$,
where $\mathrm{r}=$ Pearson's correl. Coefficient
$\square \quad$ Values of beta coeff. will fall within $+/-1$ range (same as r)

Interpretation of Beta (standardized coeff)

Generic:

A one standard deviation increase in X produces a Beta standard deviation increase (if beta>0) or decrease (if beta <0) in Y

Ex: If $\beta=0.2$ for the effect of education on weekly wages
For a 1 standard deviation increase in education (X), we expect a 0.2 standard deviation (i.e. about a fifth of a standard deviation) increase in weekly wages.

Hypothesis Testing

1) ANOVA and regression (F statistic for whole model)
2) T-tests for the effect of each of the independent variables (H 0 : $b=0$)

$$
Y=a+b_{1} X_{1}+b_{2} X_{2}, \ldots, b_{n} X_{n}
$$

$$
Y_{i}=a+b_{1} X_{i 1}+b_{2} X_{i 2}, \ldots, b_{n} X_{i n}+e_{i}
$$

-•
MultivaRIATE

