Warsaw Summer School 2023, OSU Study Abroad Program

Regression (multivariate)

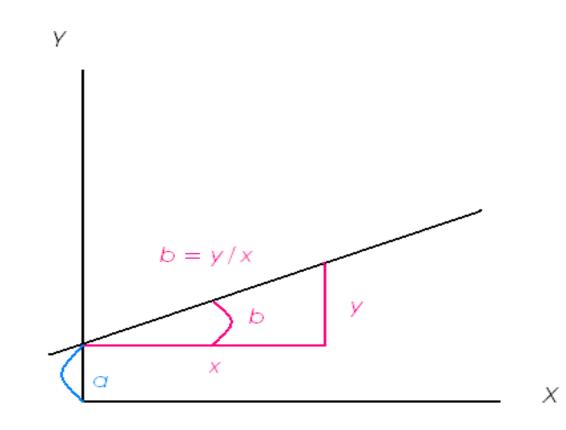
Bivariate Correlation and Regression

Assumptions:

- Random sampling
- Both variables = continuous (or can be treated as such)
- Linear relationship between the two variables;
- Normally distributed characteristics of X and Y in the population

Linear Relationship

- The line = mathematical function; can be expressed through the formula $Y = a + b^*X$, where Y & X are our variables.
- Y, the <u>dependent</u> variable, is expressed as a <u>linear</u> function of the <u>independent</u> (explanatory) variable X.

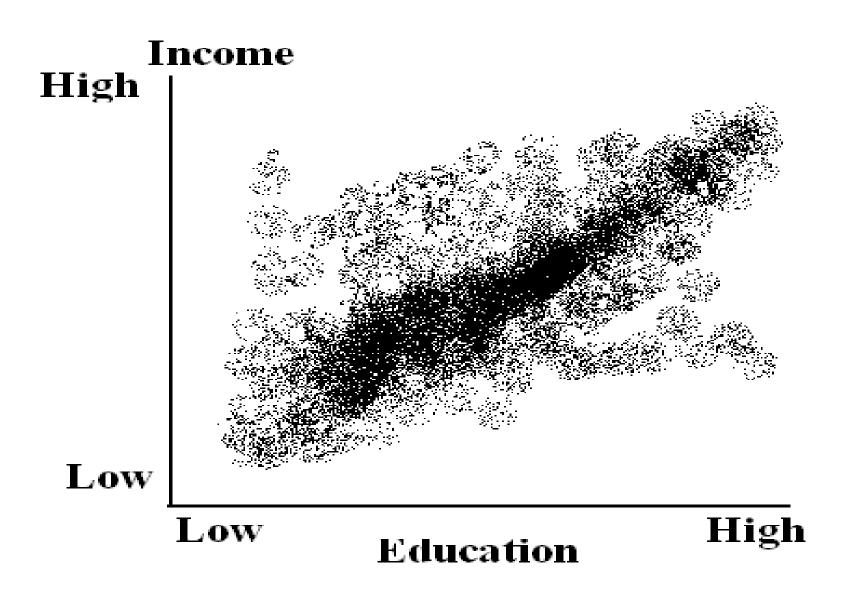


Model vs Reality

The function $Y = a + b^*X$ is a model

In reality we do not have one line

In reality data are scattered



Regression

Finds the best fitting straight line between X & Y:

the line that goes through the means of X and of Y, and

minimizes the sum of squared errors (distances) btw. the data points (observed values of Y) and the line (predicted values of Y)

least square regression

Z-scores

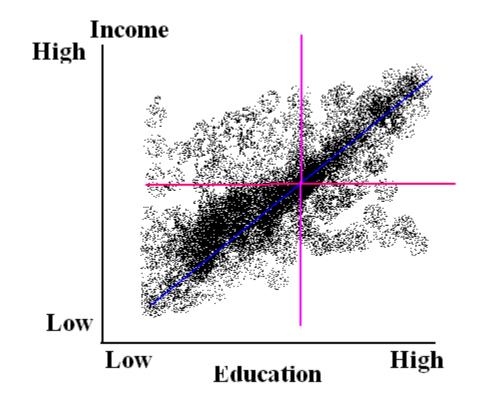
Z score (X_i) = X_i – Mean for X / $\sqrt{s^2}$

The numerical value of the z-score specifies the distance from the mean expressed in terms of the proportion of the standard deviation.

For z-score distribution: mean = 0; st. dev = 1.

Hence, in regression, when "raw" scores \Box z-scores:

For z scores



Bivariate Regression

= used to predict the dependent variable (DV) from the independent variable (IV);

Observed distribution (what the data show):

Y = a + b*X **+ e**.

- Y = observed values of DV
- a = the intercept (the value of Y when X = 0)
- **b** = **the regression coefficient (the slope),** indicating the amount of change in Y given a unit change in X
- \mathbf{X} = the independent variable
- $\mathbf{e} = \text{error term}$

$\hat{Y} = a + b * X$ (<u>Prediction model</u>)

- $\hat{Y} = \hat{Y}$
 - a = the intercept (the value of Y when X = 0)
 - **b** = **the regression coefficient** (**the slope**), indicating the amount of change in Y given a unit change in X
 - \mathbf{X} = the independent variable

• •

Residuals

Prediction model gives the points on the line.

But, in reality, not all points fall on the line.

Predicted minus *Observed* values of Y at each value of X = errors of prediction (i.e. error terms, **residuals**!!!)

$$Y = a + bX + e;$$
 \Box $e = Y - (a + b^*X)$ \Box $e = Y - \hat{Y}$

e > 0: under-prediction (Y > Y-hat)

e < 0: over-prediction (Y < Y-hat)

Ex: We checked data; Jill was paid \$7.50/week, not 16. What's the prediction error?

Method of Least Squares

The regression line minimizes the sum of error terms:

$$SSE = \sum (Y - \hat{Y})^2$$

The methods of least square provides the prediction equation $\hat{Y} = a + bX$ having the minimal value of SSE.

a, b = least square estimates

Goal:

arrive at a set of regression coefficients (bs) for the IVs that bring $\hat{Y}s$ as close as possible to Ys values

$$\hat{Y} = a + b * X$$
$$b = \frac{\Sigma \left(X - \overline{X} \right) \left(Y - \overline{Y} \right)}{\Sigma \left(X - \overline{X} \right)^2}$$

$$\cdot \quad a = \hat{Y} - b * X$$

Ex: if **a** = 4, X = years of education Y = dollars earned/week, interpret the intercept of the mode

If someone had no education (if X=0), then we would expect their weekly wage to be \$4

Covariance

In regression analysis we ask: to what extent could we predict Y knowing our variable X?

Prediction means that values X and Y go together or <u>co-vary</u>.

Covariance is sum of products, or SP,

$$SP = \Sigma \left(X - \overline{X} \right) \left(Y - \overline{Y} \right)$$

Sums of squares for X:

$$SSx = \Sigma \left(X - \overline{X} \right)^2$$

Note that in the regression equation of Y on X, $\hat{Y} = a + b * X$

b = **SP / SSx**
$$b = \frac{\Sigma (X - \overline{X})(Y - \overline{Y})}{\Sigma (X - \overline{X})^2}$$

Interpretation of b (unstandardized coefficients)

b > 0, positive relationship
b < 0, negative relationship
b = 0, no relationship

(X has a positive effect on Y)(X has a negative effect on Y)(X has no effect on Y)

<u>Generic</u>: a one unit (original measurement of X) increase in X produces a **b** unit (original measurement of Y) increase (if b>0) or decrease (if b<0) in Y

Ex: If b = 1.5, X =years of education, Y =dollars earned/week, interpret the effect of education on weekly wages.
For a one year increase in X, we would expect weekly wages to go up by \$1.50

Regression for Z-scores of X and Y

Transform all the responses into Z-scores Calculate the coefficients to create the line.

For Z-scores in the linear relationship of the type: $\hat{Y} = a + b^*X$, we have:

Predicted $Z_y = \beta Z_x$ because $\mathbf{a} = \mathbf{0}$ $a = \overline{Y} - b\overline{X}$ but $Z\overline{Y} = 0, and$ $Z\overline{X} = 0$ Why bother with standardized (beta) coefficients?

Enable comparing relative magnitude of IVs effects (in multivariate regression):

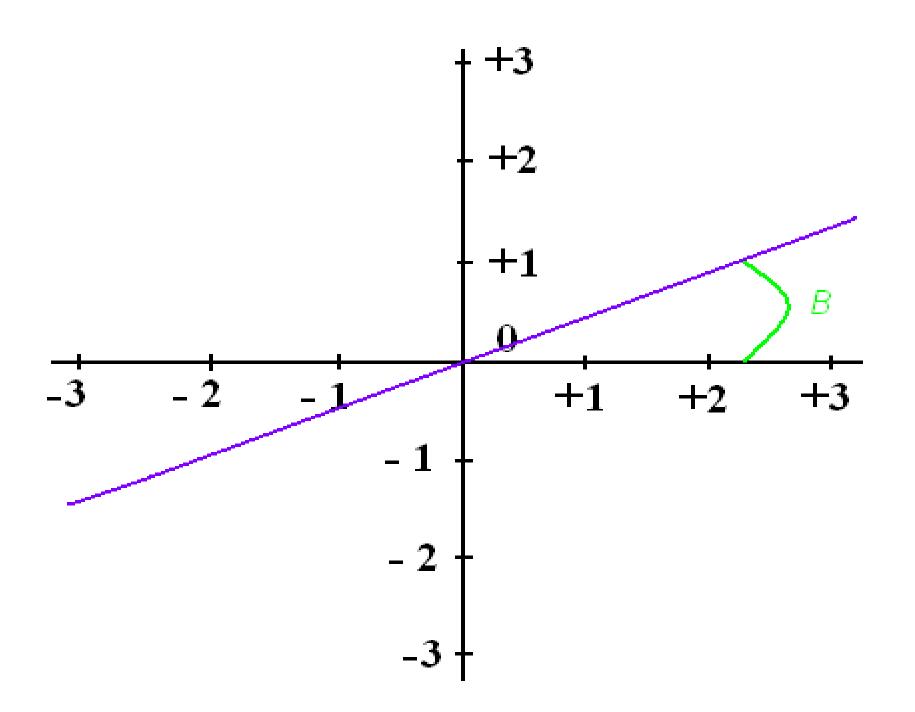
Beta coefficients are expressed in units of standard deviations

For bivariate regressions:

 β (beta) = b = r,

where r = Pearson's correl. Coefficient

Values of beta coeff. will fall within +/-1 range (same as r)



Interpretation of Beta (standardized coeff)

Generic:

A one standard deviation increase in X produces a **Beta** standard deviation increase (if beta>0) or decrease (if beta <0) in Y

Ex: If β = 0.2 for the effect of education on weekly wages

For a 1 standard deviation increase in education (X), we expect a 0.2 standard deviation (i.e. about a fifth of a standard deviation) increase in weekly wages.

Hypothesis Testing

- 1) ANOVA and regression (F statistic for whole model)
- 2) T-tests for the effect of each of the independent variables (H0: b = 0)

$$Y = a + b_1 X_1 + b_2 X_2, ..., b_n X_n$$

$Y_i = a + b_1 X_{i1} + b_2 X_{i2}, ..., b_n X_{in} + e_i$

i

MultivaRIATE

• •