Warsaw Summer School 2023, OSU Study Abroad Program

Contingency table Nonparametric relations

Frequency cross-tabulation

- Cross tabulation is the process of creating a contingency table from the bivariate frequency distribution of a statistical variables.
- Frequency f_{ij}

Matrix form of cross-tabulation

	Variable 2: Political Party							
Variable 1: Education	PO 1	PIS 2	PLS 3	SLD 4	Total			
Elementary 1		f12			f1.			
Basic vocational 2					f2.			
High school 3			f33		f3.			
Some college 4					f4.			
College 5					f5.			
Total	f.1	f.2	f.3	f.4	f			

Basics

Observed data versus benchmarks for comparisons. Assumptions for benchmarks:

- (1) margins are given,
- (2) values in the cells are limited $f_{.j}, f_{i} \ge f_{ij} \ge 0$ Two basic benchmarks
- a) Maximum association (the highest strength of the relationship)
- b) No association (statistical independence)

Observed data

Religious Affiliation

<u>Political Party Preference</u> Dem Ren Other Total

_		Dem	<u> Kep</u>	Other	<u>101a</u>
•	Cath	45	35	20	100
•	Prot	35	55	10	100
•	Total	80	90	30	200

Maximum strength of the relationship

Maximum strength: Preference to the largest row and column values

Religious

Affiliation		Political Party Preference					
		Dem	Rep Oth	ner	Total		
•	Cath	<u>8</u>	<u>0</u> 0	20	100		
•	Prot	0	<u>90</u>	10	100		
•	Total	8	0 90	30	200		

Statistical independence

Religious Affiliation	Political Party Preference					
	Dem	Rep	Other	Total		
• Cath				100		
• Prot				100		
• Total	80	90	30	200		

- Statistical independence and dependence pertains to ideas that are applied to the relationships between <u>events</u>.
- Two events are independent if the occurrence of one has <u>no</u> <u>effect</u> on the <u>probability</u> that the other will occur.
- If two variables are independent of each other, knowing the value of one variable tells us nothing about the value of the other variable.

Expected frequencies for independence:

 $e_{ij} = (Tr * Tc) / Tt = (f_i * f_{ij}) / f_{ij}$

where

Tr, f_i. = total row Tc, f._j = total column, Tt, f.. = overall total

Testing hypotheses

- Could we test the hypothesis that our data are significantly different from the benchmark of statistical independence?
- Yes. For this purpose we have to compute the <u>overall distance</u> between our data and the data of the benchmark of statistical independence.
- Computing the index of dissimilarity is a good start but we do not know the sampling distribution of the values of this index.
- For chi-square χ^2 statistics the sampling distribution is known. Then, we have to learn χ^2 .

Pearson chi square is the sum of squared differences between observed and expected frequencies, divided by the expected frequencies.

$$\chi^2 = \Sigma [(f_{ij} - e_{ij})^2 / e_{ij}]$$

Appendix Table provides critical values of χ^2 for a given df For $\alpha = .05$

and $df = 1$	$\chi^2 = 3.841$
and $df = 2$	$\chi^2 = 5.991$
and $df = 5$	$\chi^2 = 11.070$

-	Α	B	C	D	E	F	G	Н	1	J	I
2								1			
3	COMPU	TING PEA	RSON CHI-S	QUARE FO	RA2-BY-2	TABLE					
4						N. DOWN 1997 AND 1997					
5			Party * S	ex Crossta	abulation						
6				Sex							
7				Male	Female	Total		(0 - E)	(0 - E) ²	(0 - E) ² /E	1
8	Party	Rep	Count	10	5	15		2.5	6.25	0.833333	
9	1	10100	Expected	7.5	7.5			-2.5	6.25	0.833333	
10				1153	7718			-2.5	6.25	0.833333	
11		Dem	Count	5	10	15		2.5	6.25	0.833333	
12			Expected	7.5	7.5						
13	1		1.52					SUM =		3.333333	
14	Total		Count	15	15	30				1	
15			Expected	15	15			This is th	e Pearson	/	
16								C	hi-square.		
17			Note: Exp	ected = (15	*15)/30 = 7	.5					
			a straight of a start of a straight of	Long and the second second		12.2			1		

Chi-square for contingency tables serves to answers our initial question: Could we reject the null hypothesis that our data are randomly distributed within imposed margins? Correction for small n

If for some f_{ij} the values are 0 or very close to 0, then

$$\chi^2 = \Sigma [(|\mathbf{f}_{ij} - \mathbf{e}_{ij}| - .5)^2 / \mathbf{e}_{ij}]$$

Association

Association refers to coefficients which gauge the <u>strength of</u> <u>a relationship</u>.

Some measures are based on chi square statistic. χ^2 depends on the strength of the relationship and sample size. Various coefficients intend to eliminate the effect of the sample size.

The simplest measure, for 2x2 table, <u>Phi</u>. Phi eliminates sample size by dividing chi-square by n, the sample size, and taking the square root.

 $\mathbf{Phi} = \sqrt{(\chi^2/n)}$

Phi measures the strength of the relationship in terms of the concentration of cases on the diagonal.

Phi

10 5 expected
$$15x15/30 = 7.5$$
 $\chi^2 = 3.33$

5 10

Phi =
$$\sqrt{(3.33/30)} = .33$$

Besides Phi, we have two basic chi-square-based measures of association: Cramer V, and Contingency Coefficient.

- <u>Cramer's V</u> is the most popular of the chi-square-based measures of nominal association because it gives good values from 0 to 1 regardless of table size.
- V equals the square root of chi-square divided by a product of:
 - n [sample size]
 - m [the smaller of (rows 1) or (columns 1)]

•
$$\mathbf{V} = \sqrt{(\chi^2/n^*m)}$$

Pearson C

The Contingency Coefficient, Pearson's C.

- Intended to adapt Phi to tables larger than 2-by-2.
- C is equal to the square root of chi-square divided by chisquare plus n, the sample size:

$$C = \sqrt{\chi^2/(\chi^2 + n)}$$

C has a maximum approaching but never totally reaching 1.0 only for large tables and some researchers recommend it only for 5-by-5 tables or larger. There are also different measures of association for nominal variables.

These different measures are not based on χ^2 . Their logic: Proportional Reduction in Error (PER)

Lambda

Lambda, also known as *Goodman-Kruskal lambda*: The proportion reduction in errors in predicting the dependent variable (DV) given knowledge of the modes of the independent variable (IV).

Lambda

Lambda = $[(SUM(d_i) - Td)/(n - Td))$

where $SUM(d_i)$ is a sum the largest f_{ij} of IV

Td = the largest marginal value of **DV**

n = sample size

Lambda

	Dem	Rep	Total
Α	80	40	120
B	9	1	10
С	1	9	10
Total	90	50	140

Lambda = [(80 + 9 + 9) - 90]/(140-90) = .16

A, B, and C refers to different localities (Knowing these localities increases the guessing the distribution of Dem and Prot by 16%.

Other PER measures

Other measures based on PER:

- (1) Goodman and Kruskal Tau similar to lambda, but avoids a major shortcoming of lambda - giving 0 if there is some relationship between variables.
- (2) The Uncertainty Coefficient, or Theil's U, also called the *entropy coefficient*, gives a proportionate reduction in error in terms of information theory.

Properties of PER measures

All PER measures have two important properties:

- (1) they are directional: IV and DV should be specified. Computer programs give solutions for both possible arrangements of IV and DV (each called asymmetrical)
- (2) the sampling distribution of them is known and the test of significance is provided

Ordinal level

Association for ordinal variables:

Gamma, Somers d, Kendall's coefficients