Warsaw Summer School 2023, OSU Study Abroad Program

Frequency Distribution
 Central Tendency

Why Do We Test Hypotheses?

- Hypothesis testing is a foundation of science.
- In statistical inference, hypotheses generally take one of the two forms: substantive and null.
- A substantive hypothesis represents an actual expectation. E.g.: higher education increases the likelihood of upward mobility.)
- To decide whether a substantive hypothesis is supported by the evidence it is necessary to test a related hypothesis called the null hypothesis. (E.g.: education has no effect on upward mobility.)

A Framework for Statistical Work

Units of observation/analysis (cases)

Variables: data characterizing units of observation

Levels of Measurement

The level of measurement of a variable refers to the type of information that the numbers assigned to units of observation contain.

Four levels of measurement:

- nominal (categorical; discrete)
- ordinal (rank-order)
- interval (distance)
- ratio (zero-reference)

Specifying Levels of Measurement

- \mathbf{R} distinguishes between the scale level (that is numerical: interval and ratio) from ordinal and nominal levels.

Recoding

Recoding into "metric variables"

- Any nominal variable can be recoded into a set of $\mathbf{0 , 1}$ variables, called also dummies.
- Ordinal variables can be recoded into interval variables, if (a) ranks are interpretable as having a property of equal distances between them (e.g. Likert scale);
(b) we can assign some know values to the ranks on the basis of this variable (e.g. years of schooling);
(c) we can derive the values from the distribution properties (e.g. mid-points of the cumulative distribution);
(d) we can assign some values to the basis of another (correlated) variable.

Mid-points

- L150, 1-50 = 25
- L2 30, 51-80 = 65
- L3 20, 81-100 = 90

Frequency distribution

- A frequency distribution is the simplest way of representing sociological observations. It contains at least two columns: the left-hand one contains the values that a variable may take, and the right-hand one contains the number of times each value occurs. Additional right-hand columns show the percentage distribution in two forms: unadjusted and adjusted for missing data:
- Value
1
2
3 (missing)

Total

Frequency
2300
1500
300
4100

Unadjusted \% Adjusted \%
56.1 60.5
$36.6 \quad 39.5$
7.3
100.0
100.0

Counting

Proportions and Percentages (all type of variables)

- A proportion is a special ratio by which a subset of frequencies in a distribution is divided by the total number of cases.
Proportion $=f(\mathbf{i}) / \mathbf{N}$
Proportion = Part/Whole
- A percentage is a proportion multiplied by 100:

Percentage $=(\mathbf{f}(\mathbf{i}) / \mathbf{N}) * \mathbf{1 0 0}$

\%

- 1 Strongly agree 20
- 2 Agree somewhat 30
- 3 Not sure 20
- 4 Disagree somewhat 15
- 5 Strongly disagree 15

Counting

Cumulative Distributions

Cumulative percentage (c\%) is the percentage of cases having any given score or a score that is lower. To calculate the cumulative percentage, we use the formula: $\mathbf{c \%}=(\mathbf{c f} / \mathbf{N}) * 100$ where $\mathbf{c f}=$ cumulative frequency

Cumulative frequencies (cf) are defined as the total number of cases having any given value or a value that is lower. The cumulative frequency $c f$ for any value is obtained by adding the frequency for that value to the total frequency for all scores below.

Charts

- PIE CHART: Graph drawn as a circle where the category (value) is paired with a segment that represents the frequency of that category (value).
- BAR GRAPH: Graph of the data where the category (value) is paired with a bar that represents the frequency of that category (value). Used with qualitative data.
- HISTOGRAM: Graph of the data where the bars for scores or intervals are connected. Used also with quantitative data.
- FREQUENCY POLYGON: Graph in which a smooth line connects the top of the bars in a histogram.

Central Tendency and Dispersion

Two basic characteristics to describe with descriptive statistics:

- the middle of the distribution: Central Tendency Measures, CT
-how spread out the distribution is: Measures of Variability (Dispersion), VR

Central Tendency, CT, is a way to describe the overall trend of a variable in one number. It says something about a typical response in the data; refers to the middle of the distribution.

Central Tendency

Three measures of CT, depending on level of measurement of the variables:
Mode
Median
Mean

Mode $=$ the most common response; the value with the largest frequency. The only way we can measure CT for nominal variables; however it is also use for ordinal and interval variables.

Central Tendency

- \quad Median $=$ the middle point of the distribution; value where 50% above and 50% below.
The middle point of the distribution: variable's value for the case $(\mathbf{N}+1) / 2$. However, for the continues distribution or intervals, the formula is:

Median $=\mathbf{L}+\left[\left(\mathbf{N} / \mathbf{2}-\mathbf{c f}_{\mathbf{b}}\right) / \mathbf{f}\right] * \mathbf{i}$
$L=$ lower limit of the interval, $N=$ total number of cases, $f=$ frequency within the critical interval, i - interval size $\mathbf{c f}_{b}=$ cumulative frequency below the lower limit of the critical interval

Median

Meadian value?
Eg. I 1,3,6,9,14,15,18,25,30,31,32
Eg. II
1-2 10
3-4 20
5-6 40
7-8 20
9-10 10
$5+[(50-30) / 40] * 1=5.5$

Central Tendency

Median $=\mathbf{L}+\left[\left(\mathbf{N} / 2-\mathbf{c f}_{\mathbf{b}}\right) / \mathbf{f}\right] * \mathbf{I}$
$L=$ lower limit of the interval, $N=$ total number of cases, $f=$ frequency within the critical interval, $i-$ interval size $\mathrm{cf}_{\mathrm{b}}=$ cumulative frequency below the lower limit of the critical interval
$5+[(50-30) / 40] * 1=5.5$

Median: for both ordinal and interval variables; not for nominal.

Central Tendency

Mean = the average.

- Symbol: bar over the letter used for the particular variable. (If X symbolizes age, the x with bar is the mean age)
- \quad Mean $=\left(\Sigma \mathbf{X}_{\mathrm{i}}\right) / \mathbf{N}$, where \mathbf{X}_{i} means "the value for each case," and Σ means "add all of these up."

Mean: only for metric data!

Figure 46 Types of Frequency Distributions

[^0]
b. Nepalmeth 5ktand dratiman

a. Fosthydy
phend
belibulan

Summary of CT

Scale	Mode	Median	Mean
Nominal	Yes	No	No
Ordinal	Yes	Yes	No
Interval	Yes	Yes	Yes

[^0]: 2. Bymelrial trithimith
