Warsaw Summer School 2023, OSU Study Abroad Program

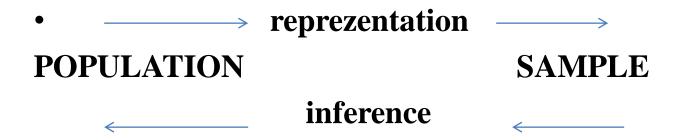
Fundamentals of Research Design: Populations and Samples, Variables and Their Values, Data organization, Part I

The Stages of Social Research

- 1) <u>Specify research goals</u>. What you want to investigate and why?
- 2) <u>Review the literature</u>. Place your question in the context
- 3) <u>Formulate hypotheses</u>. Provide a theoretical model (a set of propositions). Chose variables and specify hypotheses.
- 4) <u>Measure and record</u>. (A) Define population and select sample. B) Develop instruments. C) Describe data.
- 5) <u>Analyze the data</u>: Test hypotheses. Draw conclusions
- 6) <u>Invite scrutiny</u>. Make decisions about the fit of data and theory. Results are communicated to an audience.
 (Confirm or reject your initial theory)

Social Researchers Test hypotheses

- A hypothesis is a prediction about the relationship between variables. It is usually based upon theoretical expectations about how things work.
- At minimum any hypothesis involves two variables.
- When causality is involved, we have <u>independent</u> <u>variable(s)</u> (IV) and a <u>dependent variable (DV)</u>.
 X → Y
- What are independent and dependent variables? Presumed <u>cause</u> and <u>effect</u> notion.


- Hypothesis testing is a foundation of science.
- In statistical inference, hypotheses generally take one of the two forms: substantive and null.
- A *substantive hypothesis* represents an actual expectation. E.g.: higher education increases the likelihood of upward mobility.)
- To decide whether a substantive hypothesis is supported by the evidence it is necessary to test a related hypothesis, called the *null hypothesis*.

(E.g.: education has no effect on upward mobility.)

Surveys as Data Sources for Hypotheses Testing

A <u>survey</u> is a method of gathering information from a *sample* of a population, through contacts with respondents.

- **2** Functions of statistics:
- - to <u>describe</u> the sample data
- - to <u>infer</u> from a sample about the population

Units of observation/analysis (cases)

Variables: data characterizing units of observation

- A **variable** (age) is a measurable characteristic that differs across the units of observation (individuals).
- The observations (years) are the values of the variables for each unit.
- Each variable assumes a set of some definite values.
- A full measurement procedure specifies values for each variable across all units of observation.
- In scientific inquiry we rely on operational definitions to specify concepts.

Matrix form of data, X_{ij}, i = unit of analysis (1,...,N), j = variable (1,...,K)

	Variables					
Cases	Age	Gender	Education	•••	Political Party	•••
	j = 1	j = 2	j = 3		j = K-1	j = K
i = 1	21	0	15		1	•••
i = 2	27	1	16	•••	2	
i = 3	18	1	12	•••	0	•••
i = 4	23	1	16	•••	1	•••
i = 5	34	0	21		2	•••
	•••			•••		
i = N - 1	17	0	11	•••	2	•••
i = N (last person)	36	1	17	•••	3	•••

Measurement

- A good measuring device must meet the condition of <u>exhausting</u> the possibilities of what it is intended to measure.
- <u>Mutually exclusive</u> means that each observation fits one and only one of the scale values (categories).

<u>Missing values</u>. Lack of information. Erroneous information. Non-interpretable information • Variable names *vs*. variable labels, and variable values The variable name is a <u>mnemonic</u>.

The <u>variable name is a descriptive phrase</u>, usually only a few words long, that captures the essence of what the variable is about. Variable label is a short description of the content.

Labels

Assigning <u>value</u> labels

• Continuous variables usually do not need value labels. Examples: income, results of complicated tests, age, year in the labor force.

Researchers' advise:

• If a variable has limited number of values k (k < 10), it is better to label them all or at least a subset, independently of the level of measurement.

Missing Values

Meaning:

- Lack of information.
- Erroneous information.
- Non-interpretable information.

Don't know as a special category – Is this missing datum?

The level of measurement of a variable refers to the type of information that the numbers assigned to units of observation contain.

Four levels of measurement:

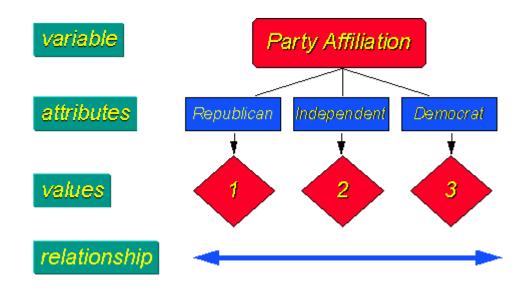
- nominal (categorical; discrete)
- ordinal (rank-order)
- interval (distance)
- ratio (zero-reference)

Level of Measurement: Nominal

Nominal Variables (qualitative):

observations consist of separate categories that are labeled.

For practical data processing the names are numerals, but in that case the numerical values is irrelevant (we cannot order them).


Ex:

"Dummy" (dichotomous) variables: Gender (0, 1 where 0 = female; 1 = male)

Religious affiliation (1, 2, 3, 4, 5 where 1 = Catholic, 2 = Protestant, 3 = Jewish, 4= Muslim, 5 = Other)

Party affiliation

Social Class

Any nominal variable can be recoded into a set of 0,1 variables, called also dummies

Ordinal variables:

 observations consist of separate categories that are arranged in rank order (can be ordered, but we don't know if the distance between the steps is equal for all steps; no addition, no substraction).

Ex: Likert scales

When no. of categories = large (7/more) → treat rank-order scales as continuous

Metric Variables

Interval variables: observations consist of ordered categories, where distances between categories, called *intervals*, reflect differences in magnitude.

Ex: Celsius

<u>Ratio variables:</u> interval scale with the additional feature of an absolute zero point.

Ex: Income (in Zloty, Dollars, ...), Education (in years)

Single Indicators and Composite Measures

An **indicator** consists of a single observable measure, such as a single questionnaire item.

Ex: What year have you been born in?

Composite measures: Scales & Indexes

- use several indicators combined, to create a new variable

Ex: attitudes toward immigrants; self-esteem scale; Notingham scale

Level of measurement and the purpose of the study

Example: Education

1. Elementary, 2. Some High School, 3. High School Completed, 4. Community College, 5. Liberal Arts College Incomplete, 6. College Completed, 7. Above College

- Nominal Scale (Labels? See 4, 5)
- Ordinal Scale?
- Interval?

After recoding into years of schooling: 1=8, 2=10, 3=12, 4=14, 5=14, 6=16, 7=18

Measurement

The measure should be:

- Valid
- Reliable
- Exhaustive
- Mutually Exclusive
- <u>Validity</u> refers to the extent to which an empirical measure adequately reflects the real meaning of the concept under consideration.
- <u>Reliability</u> refers to the likelihood that a given measurement procedure will yield the same description of a given phenomenon if that measurement is repeated. Reliability is the consistency of measurement.